Login | Member benefits | Join us
Researchers PDFs
AIFST Fresh Produce Food Safety Summit
Aphids & Viruses
Carabid beetles as sustainability indicators
Clubroot - Nursery Access
Clubroot - Nursery Cleaning
Clubroot - Nursery Contamination
Clubroot - Nursery Design
Clubroot - Nursery Monitoring
Clubroot - Nursery Response
Clubroot - Nursery Sources
Hangzhou Foods
IPM - approach to Potato crops
IPM - approach to practice change
IPM - Potato/Tomato Psyllid
Lettuce Anthracnose Management
Native Plants - Food Safety
Native Plants - Food Standards
NY9406 Downy Mildew on seedlings - factsheet
NY9406 Downy Mildew on seedlings - report
NY9406 Downy Mildew on seedlings - review
NY97011 Downy Mildew on seedlings - extension
NY97011 Downy Mildew on seedlings - notes
Parsley Disease Handbook
Parsnip Variety Trials
Phytochemical composition of food
Phytochemicals and Healthy Foods
Reclaimed water - risk model
Reclaimed water use in Victoria
Recycled Water Quality - Lettuce
Sclerotina - Lettuce Conference 2002
Strategies for Control of Root Rot in Apiaceae Crops
Summer Root Rot in Parsley
Thrips & Viruses
Tobamoviruses
Vegetable Disease Program
Vegetable Diseases in Australia
Vegetables Viruses
VG00013 Leek Diseases
VG00016 Environmental Performance
VG00026 IPM Eggplant & Cucumber
VG00031 Peas - downy mildew & collar rot
VG00031 Peas - Downy Mildew - metalaxyl resistance
VG00034 Capsicum & Chillies - weed control
VG00044 Clubroot - Applicator design
VG00044 Clubroot - Chemical control
VG00044 Clubroot - Implementing a control strategy
VG00044 Clubroot - Managing outbreaks
VG00044 Clubroot - Nutritional amendments
VG00044 Clubroot - Strategic application
VG00044 Clubroot – Introduction
VG00044 Clubroot – Limes and liming
VG00044 Clubroot – Prevention & Hygiene
VG00044 Clubroot – Understanding Risk
VG00044 Total Clubroot Management
VG00048 Alternate fungicides for sclerotinia control
VG00048 Brassica green manure conference paper 2004
VG00048 Brassica Green Manure Update 16
VG00048 Brassica Green Manure Update 18
VG00048 Diallyl Disulphide - DADS - trials
VG00048 Lettuce - Sclerotinia biocontrol
VG00048 Lettuce Sclerotina - Biocontrols
VG00058 Pea - Collar Rot
VG00069 Cucumber & Capsicum diseases
VG00084 Beetroot for Processing
VG01045 Bunching Vegetables - disease control
VG01049 Compost - Benefits
VG01049 Compost - Choosing a Supplier
VG01049 Compost - Getting Started
VG01049 Compost - Introduction
VG01049 Compost - Safe Use
VG01049 Safe Use of Poultry Litter
VG01082 Broccoli Adjuvant Poster
VG01082 Broccoli Head Rot
VG01096 Article - White Rot research
VG01096 Integrated Control of Onion White Rot
VG01096 Poster - Alternative fungicides
VG01096 Poster - Diallyl Disulphide - DADS
VG01096 Poster - Trichoderma biocontrol
VG01096 Poster - Trichoderma optimisation
VG01096 White Rot - Spring Onions
VG02020 Capsicum - Sudden Wilt
VG02035 Capsicum - virus resistance
VG02105 Vegetable Seed Dressing Review
VG02118 White Blister
VG03003 Lettuce - Varnish Spot
VG03092 Lettuce - Shelf Life
VG03100 Retailing Vegetables - Broccolini®
VG04010 Maximising returns from water
VG04012 Hydroponic lettuce - root rot
VG04013 Brassica White Blister
VG04013 White Blister - Control Strategies
VG04013 White Blister - Race ID
VG04013 White Blister - Risk Forecasting
VG04013 White Blister - Symptoms
VG04013 White Blister - Workshop Notes
VG04014 Better Brassica
VG04014 better brassica - roadshow model
VG04014 better brassica - workshop notes
VG04014 Clubroot Guidebook
VG04014 Clubroot Poster
VG04015 Benchmarking water use
VG04016 Celery leaf blight - Poster
VG04016 Celery Septoria
VG04019 Nitrate & Nitrite in Leafy Veg
VG04021 Vegetable Seed Treatment
VG04025 Parsley Root Rot
VG04059 Diagnostic test kits
VG04061 White Blister - alternative controls
VG04061 White Blister - Workshop 2007
VG04062 Beetroot Study Tour
VG04067 IPM - Lettuce Aphid
VG05007 Onion White Rot - post plant fungicides
VG05008 IPM - Cultural Controls
VG05014 IPM - Native vegetation pt1
VG05044 IPM - Consultants Survey
VG05044 IPM - Grower Survey
VG05044 IPM - Lettuce Aphid Trials
VG05044 IPM - Lettuce Disease Poster
VG05044 IPM - Predatory Mites
VG05044 IPM - Project Summary
VG05045 Parsnip Canker
VG05051 Climate Change
VG05053 Rhubarb Viruses
VG05068 Baby Leaf Salad Crops
VG05073 Mechanical Harvesting
VG05090 Green Bean - Sclerotinia
VG05090 Rhizoctonia Groups
VG06014 Revegetation for thrip control
VG06024 IPM - Native vegetation pt2
VG06046 Parsley Root Rot
VG06047 Celery - Septoria Predictive Model
VG06066 LOTE Grower Communications
VG06086 IPM - Potential & Requirements
VG06087 IPM - Lettuce Aphid
VG06087 IPM - Toxicity testing
VG06088 IPM - Lettuce Aphid trials
VG06092 Pathogens - Gap Analysis
VG06092 Pathogens of Importance - poster
VG06140 Beetroot - colour quality
VG07010 Systemic aquired resistance
VG07015 Curcubit field guide
VG07070 Conference Notes 2008
VG07070 Foliar diseases
VG07070 Nitrogen & lettuce diseases
VG07070 Predicting Downy Mildew on Lettuce
VG07070 White Blister - Chinese Cabbage
VG07070 White Blister - Cultural Controls
VG07070 Workshop Notes - 2008
VG07070 Workshop Notes - 2010
VG07125 IPM - soilborne diseases
VG07126 Biofumigation oils for white rot
VG07126 New approaches to sclerotina
VG07127 White Blister - Alternative Controls
VG08020 Optimising water & nutrient use
VG08026 Pythium - field day
VG08026 Pythium - workshop 2010
VG08026 Pythium control strategies - overview
VG08107 - Carbon Footprint - workshop
VG08107 - Carbon Footprint part 1 - definitions
VG08107 - Carbon Footprint part 2 - issues
VG08107 - Carbon Footprint part 3 - calculators
VG08107 - Carbon Footprint part 4 - estimate
VG08107 - Carbon Footprint part 5 - users
VG08107 - Carbon Footprint part 6 - options
VG08426 Parsnip - Pythium Notes 2010
VG09086 Evaluation of Vegetable Washing
VG09159 Grower Study Tour- Spring Onions & Radish
VG96015 Carrot Crown Rot
VG96015 Carrot Defects - Poster
VG97042 Export - Burdock, Daikon and Shallots
VG97051 Pea - ascochyta rot
VG97064 Greenhouse Tomato and Capsicum
VG97084 Green Bean - white rot
VG97103 Celery Mosaic Virus
VG98011 Carrot - Cavity Spot
VG98048 Lettuce - Adapting to Change
VG98083 Lettuce - rots & browning
VG98085 GM Brassicas
VG98093 Microbial hazards - review
VG98093 Safe vegetable production
VG99005 Quality wash water
VG99008 Clubroot - rapid test
VG99016 Compost and Vegetable Production
VG99030 Globe Artichokes - value adding
VG99054 Onions - Theraputic Compounds
VG99057 Soil Health Indicators
VG99070 IPM - Celery
Victorian soil health
VN05010 Folicur - alternative carriers
VN05010 Onion White Rot - Fungicides
VN05010 Onion White Rot - summary
VX00012 Metalaxyl breakdown
VX99004 Clean & Safe Fresh Vegetables
Whitefly & Viruses
Contact Details
Vegetable Growers Association of Victoria

Mail Box 111,
Melbourne Markets

542 Footscray Rd,
West Melbourne, VIC, 3003

Tel: 03 9687-4707
Fax: 03 9687-4723
Login or Sign up now!










Latest News

Bayer Vegetables Forum
Read more here...



Agricultural Trailers
Read more here...



Food Safety Proposal For Comment
Read more here...



Supermarket Cuts Veg Prices
Read more here...



Green Snail Alert
Read more here...


VG98085 GM Brassicas

During the 1990's, genetic modification of plants became a reality.

World-wide in excess of 44 million hectares of genetically modified plants were grown in 2000 and this is expected to increase to 50 million hectares in 2001

While vegetables represent, only a small portion of these figures, potato cultivars with resistance to Colorado beetle and Potato Leaf Roll Virus (PLRV), tomatoes with delayed ripening and squash with virus resistance have been commercialised in the USA.

The vegetable industry in partnership with the Institute for Horticultural Development - Knoxfield and Horticulture Australia Ltd are developing integrated crop management (ICM) programmes for diamondback moth and clubroot.

For the past three years, researchers at IHD - Knoxfield have been developing ways to genetically modify vegetable brassicas with genes that may be useful to control insects and diseases to complement these ICM programmes.

This report summarises research to develop and use genetic modification to transfer agronomically useful genes to vegetable brassicas and describes four aspects of our research :

  • Develop tissue culture regeneration systems

  • Develop appropriate gene transfer systems

  • Prepare gene constructs

  • Preliminary assessment of genetically modified plants for their response to clubroot and diamondback moth
Authors

James F. Hutchinson

Gowri Maheswaren

Vijay Kaul

VG98085 Genetic enginering of brassicas for pest and disease control and improved storage - 2001
Download 579kb

Summary :

  • The insect pest diamondback moth and fungal disease clubroot are major problems world-wide with vegetable brassicas, resulting in reduced yield and produce quality.

  • Integrated crop management systems for both organisms are being developed to reduce reliance on chemical control.

  • For crops such as broccoli, improved shelf life is also a desirable attribute. Breeding for resistance to diamondback moth and clubroot and improved shelf life are difficult, as known sources of resistance are either not available or difficult to incorporate into cultivated lines using sexual hybridisation.

  • Gene technology is able to overcome these barriers and provides a new, novel and powerful tool to study these problems.

  • Tissue culture methods have been developed to reliably and reproducibly regenerate adventitious shoots from :

    • broccoli (8 cultivars)

    • brussels sprout (3 cultivars)

    • cabbage (2 cultivars)

    • cauliflower (15 cultivars)

  • There is considerable variation in the way inpidual cultivars regenerate with an order of magnitude difference between the worst and best cultivars.

  • Gene transfer systems have been developed for a number of cultivars.

  • Research using a construct with the gusA gene has not been particularly useful to develop a transformation system.

  • A population of genetically modified vegetable brassicas has been produced with potentially useful genes.

  • In excess of 21,000 explants were processed resulting in 105 transgenic lines. This transformation frequency is very low and requires improvement.

  • A number of gene constructs have been produced, with different anti-microbial genes, a proteinase inhibitor gene and a gene associated with cytokinin biosynthesis.

  • These have been transferred to a number of cultivars, including Marathon (broccoli), Atlantis and Plana (cauliflower) and Pak Choi (Chinese cabbage).

  • These transgenic lines are in various stages of assessment in glasshouse trials.

  • Transgenic material has been screened in the glasshouse for their response to clubroot and diamondback moth and a number of lines with promise identified.

  • Future work will characterise these further and screen the remaining transgenic lines.

Acknowledgements :

We would like to thank our collaborators at IHD - Knoxfield, in particular Josie Lawrence, Caroline Donald and Ian Porter for assistance with the clubroot studies

We acknowledgealso thank, Nancy Endersby and Peter Ridland at IHD - Knoxfield, for assistance with the diamondback moth feeding experiments.

We also thank Kiang Lee (Henderson Seeds) for providing some of the germplasm used in these experiments.

This project was funded by the Agriculture Victoria and Horticulture Australia Ltd through the National Vegetable R&D Levy .

The Australian Government provides matched funding for all HAL’s R&D activities.


^ Back to top    

Features...
ViewNext

Summer Root Rot in Parsley

This report addresses recent industry concerns over the development of summer root rot in parsley. Previous work on parsley root rot conducted by... Read more...

Site supporters
Events
Web design Melbourne | Web Agent Copyright Vegetables Victoria 2014